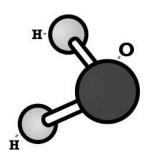


5.1	5.1 From Particles to Solutions p. 178 # 8,9,10	
8	Pane of glass – solution	
	Chocolate chip ice cream – mechanical mixture	
	Clear apple juice – solution	
	Pizza – mechanical mixture	
	Garbage in garbage can – mech. Mixture	
9	You need an alloy that heats up and liquefies quickly but also	
	solidifies(sets) quickly.	
10	Lead is toxic to humans. It can cause cancer. We are trying to remove it	
	from many items.	

5.2 Pł	nysical Properties p. 182 # 1, 2, 3, 4 a-d
1	Qualitative property describes the quality. It is a descriptive observation that uses the 5 sense.
	ie: it was red. A <u>quantitative property</u> describes the quantity – the number. These are measured
	observations so they always include a number ie: length is 5 cm.
2	a) colour is qualitative property
	b) 60 cm - quantitative property
	c) qualitative
	d) quantitative (#)
3	Mountain bikes –
	 strong – should be able to go over bumps and not break
	• light weight – you need to power it so heavier is harder. Also you may need to lift it once in a
	while
	• anything else?
4 a-d	→ Remember: colour and state are always 2 properties you can list fairly easily
	a) Copper wire – ductile (make into wire), flexible (wires aren't always straight), metallic lustry
	(shiny), thin (wires are not usually very thick
	b) 500 g of butter – yellow, solid, soft, smooth
	c) glass of milk – liquid state, low viscosity, opaque (can't see through), has little or no smell,
	white
	d) candle – flammable (it burns), solid, soft (can easily scratch it), dull (most often it is not shiny)

5.3 C	5.3 Chemical Properties p. 186 # 1-7	
1	A physical change does not change the substance. If I cut up paper, it is smaller but it is still	
	paper. That is a physical change. A chemical change indicates that the substance has changed. If	
	I burn paper, it is no longer paper. It has become ash or soot. That is a chemical change.	
2	Water freezing is not a chemical change – it did not stop being water. It just went from being	
	liquid water to solid water. Water freezing is a physical change.	
3	• Metallic lustre – physical property – it describes how metal looks. It is still metal.	
	 Boiling point – physical property – it describes the temperature at which the substance 	
	changes state from liquid to gas. All state changes are physical properties.	
	• Explodes when ignited – <u>chemical property</u> – when something it explodes, it changes. It is no	
	longer the same substance. Explosion is not a state change.	
	 changes colour when mixed with water – I don't like this clue – ask me why in class. 	
4	 water boiling – physical change – water has just changed state – it is still water 	
	• wood is sawed / made into box – physical change – it is still wood but a different shape.	

	• firewood burns and ash remains – chemical change – clue? Change of colour. Alsoash is NOT
	wood – the substance has changed.
	 sugar, ewggs and flour are mixed and baked into cookies. – chemical change – baking is a
	chemical change. Clue? Smell – odour (lovely smell) is given off. Colour change – baked cookies
	have 'browned'.
5	Glow sticks give off light – that is a clue that chemical change has occurred.
6	a) Physical change – liquid wax changes back to solid wax (drips on side) but also solid wax
	turning into liquid wax (pool of liquid wax below flame)
	b) Why shorter? The wax is burning and thus being used up. The burning process has chemically
	changed the wax to gas (carbon dioxide)
	c) heat and light is given off by the candle. These are clues that a chemical change has occurred.
7	Clues that a chemical change has occurred:
	a) start the car – the engine heats up & smoke (gas – a new substance) is released from tailpipe
	b) remove stain – stain is one colour and afterwards it is gone . This is a colour change.
	c) baking sode & lemon juice – bubbles mean a new gas has formed. This is a new substance.
	d) baking cookies – smell is a new substance (gas)
	e) match ignites – smoke & light produced.
	f) bleached towel – towel was red and then turned white. Colour change indicates a chemical
	change
	g) sweeter banana – sweeter taste means there is more fruit sugar – it is being produced during
	the ripening process. New substance produced means a chemical change.


5.6 Ch	5.6 Characteristic Physical Properties p. 198 # 3, 4, 7, 10, 12	
3	When silver solidifies, the particles move closer together and thus it becomes denser. Solid	
	silver would sink in liquid silver.	
4	Remember to look up specific densities in the chart on page #193	
	Volume = $\frac{mass}{density}$ Volume = $\frac{5.00g}{7.87g/cm3}$ = 0.64 cm ³	
7	Remember that 1.0 kg = 1000g	
	Density = $\frac{mass}{volume}$ Density = $\frac{1000g}{370cm3}$ = 2.7 g/cm ³ This is aluminum	
10	Volume = length x width x height	
	Volume = $18.00 \text{ cm x } 9.21 \text{ cm x } 4.45 \text{ cm} = 737.7 \text{ cm}^3$ Density gold = 19.32 g/cm^3	
	Mass = Volume x Density = 737.7 cm² -x 19.32 g/ cm² = 14,252 g = 14.2 kg of gold	
12	Known densities	
	Alcohol = 0.79 g/mL water = 1.0 g/mL ice = 0.92 g/mL	
	If I have a liquid that is either alcohol or water, I would put an ice cube in it. The ice cube will	
	float in water but it will sink in alcohol.	

6.1 Pe	6.1 Periodic Table p. 215 # 1, 3, 5, 8, 9	
1	If it's on the periodic table it is an element. If it is NOT on the periodic table, then it is NOT an	
	element. Is it an element?	
	Bronze – no (metal alloy)	
	Tin – yes	

	Chromium – yes	
	Solder – no (usually a metal alloy)	
	Propane – no	
	Arsenic – yes	
	Nickel – yes	
3	If a white powder becomes a gas and a black soli components. It was heated and not burned. It	simply broke down into simpler parts so it is NOT
	an element. Elements are the simplest that mat	
5	There are more metallic elements on the periodi	
8	Metals • conducts electricity • can be flattened with hammer = malleable which means a metal. Non-metals are brittle • 1 st column = left side = metal	Non-metals • gas normally (metals are normally solid) • upper right of table is always non-metals • shatters – this is brittle so = non- metal • dull yellow – dull (not shiny) and yellow (not grey or gold) is a non-metals
9	 a) Copper and aluminum are metals so they condyou want the heat from the stove element to transform the stove element to transform the stove element to transformer and gold – are shiny (have a lustre) which somewhat malleable so they can be shaped into our jewellry cannot be liquid or gas. c) argon in double-glazed windows – this helps in does NOT conduct heat well (thermal energy). S leaving to the outside which is a good thing. You 	nsfer to food. These metals do just that. In makes them pretty for jewelry. They are rings or bracelets etc. They are solids because insulate your house. Argon is a non-metal and o this prevents your heat from your house

6.4 P	6.4 Patterns in Periodic Table p. 225# 1, 2, 3, 4, 6, 8,	
1	a) False – elements in the same vertical columns are in the same family	
	b) true (properties are similar. Not sure I would say 'same')	
	c) true	
	d) true	
2	Chlorine – Halogens	
	Magnesium – alkali earth metals	
	Potassium – alkali metals	
	Helium – noble gases	
3	Elements in the 1 st and 2 nd column all end in 'ium' except for Hydrogen. Hydrogen really is an	
	element all on its own so that makes sense.	
4	Sodium is highly reactive with water so its not a good idea to have it in wiring. What if the wires	
	got damp? They would catch on fire! (hopefully you were in class when I did this demo).	
6	Hydrogen is a gas which means it should be on the non-metal side of the period table. It would	
	make sense to put it in the Halogens since they are very reactive and hydrogen is very reactive.	
8	Alkali metals are rarely found in pure form because they are so reactive. When they are with	
	other substances they would just react and chemically change and thus are no longer that pure	
	alkali metal element. ie: Na reacts with Cl and becomes NaCl (salt) and thus is not pure Na any	
	longer.	

6.6 At	6.6 Atomic Theories p. 233 # 2, 3, 5		
2	J.J. Thomson's experiment – electron ray with Cathode Ray Tube		
	a) Particles are negative because they were always attracted to a positive plate		
	b) these particles are now called 'electrons'		
	c) Thomson concluded these electrons are evenly distributed throughout the atom		
	d) the atom is neutral so there must also be positive particles inside the atom. (otherwise atoms		
	would all be negatively charged and not neutral).		
	e) Thomson figured the positive particles were also evenly mixed in atom		
	'Plum pudding' modelor today we would say"chocolate chip cookie' model. The dough		
	would be the positive particles and the chocolate chips would be the electrons.		
3	If a neutral atoms has 3 electrons, it must also have 3 protons so the whole atom has no charge		
5	(neutral)		
5	Rutherford's gold foil experiment		
5	Rathenord's gold foil experiment		
	a) Rutherford expected that these small particles would blast through the gold foil.		
	b) The results surpised him because some of the alpha particles deflected and did not go straight		
	through. A small number even deflected backwards!		
	c) Rutherford determined that there must be a small dense Positive core in the atom which he		
	called the nucleus.		
	d) These positive particles must all be in the small dense core (nucleus)		
	d) mese positive particles must all be in the small dense core (nucleus)		
6780	bhr-Rutherford Models p. 240 # 1, 2, 3, 9		
1	Yes, all atoms of the same element contain the same number of protons. That is because the #		
1	of protons actually determines which element you have. If the number of protons change, then		
	you have a different element. ie: Carbon has 6 protons and only 6. If it has 5 protons, then it is		
2	no longer carbon, it is boron.		
2	All atoms of the same element do NOT always have the same number of neutrons. Neutrons do		
	NOT determine which element it is. They add mass though. The mass number given on the		
2	periodic table is the average mass of an atom of a particular element.		
3	a) true		
	b) false – the atomic mass (# p + # n) is always larger than the atomic number (# p only)		
	c) normally false. But if a hydrogen has only 1 proton & 1 electron and NO neutrons, then the		
	atomic number = 1 and the atomic mass = 1. This is the only situation I can think of in which		
	atomic mass = atomic number.		
	d) false - # protons does not have to equal # neutrons. Often doesn't		
	e) true – if the atom has a neutral charge		
	f) true!		
9	# electrons in outer orbit (valence electrons) does seem to determine the reactivity of the		
	element. For example, we looked at alkali metals (Na, Li and K) They all reacted quickly with		
	water and they all have just 1 electron in their outer orbit. Also, halogens are known to very		
	reactive and they all have 1 electron short of a full outer orbit. Elements in the middle of the		
	periodic table are not so reactive and they are outer orbits that are typically closer to half filled.		

7.1 lr	ntroduction to Molecules p. 261 # 1-9
1	a) 4 elements
	b) Na – 1 H – 1 C – 1 O – 3
	c) all elements are non-metals except Na
2	a) Elements \rightarrow S ⁸ , Ne, H ₂
	b) Compounds \rightarrow CO ₂ C ₃ H ₈
	c) atoms \rightarrow Ne
	d) molecules $ ightarrow$ all are molecules except Ne
3	Diatomic means 2 atoms. ie: O ₂
4	There are 7 diatomic molecules. Remember HOFBrINCI? There are 7 elemental symbols in
	there. Each of these 7 elements form a diatomic (2 atom) molecule.
5	Hydrocarbon is a good name because each molecule contains carbon and hydrogen (hydro-).
	The only difference is the number of carbons & hydrogens. *would be good to put a few
	examples in your notebook right here*
6	a) An atom has a neutral charge whereas an ion has a charge (either +ve or –ve)
	b) An easy atom to draw with a BR diagram is Lithium (Li). It will have 2 electrons in the inner
	orbit and only 1 in the outer orbit. There will be 3 protons in the nucleus so the atom is neutral.
	A lithium ion will still have 3 protons in the nucleus but will only have 2 electrons in the outer
	orbit. It will lose/give away that single electron in the outer orbit. This give the lithium atom a
	+1 charge and it is not an ion.
7	a) ammonia NH3
	b) carbon dioxide CO ₂
	c) carbon monoxide CO
	d) water H ₂ O
	e) rubbing alcohol C_3H_8O
8	Calcium forms a +2 ion.
	See me if you can't see why
9	Ca ⁺²

7.3 Ho	ow Atoms Combine p. 266 # 1-4, 7
1	a) 14 parts gold + 10 parts copper = 24 parts (24 karat actually!) 14/24 x 100% = 58% gold
	b) metals + metals do NOT form compounds. The atoms are not chemically bonded together.
	They for a solid solutions or an alloy .
	c) 14K gold in jewelry is not pure gold. It looks like pure gold but it is only 58% gold. The copper
	(or other metals) are added to make gold stronger/harder. This is desirable in jewellery because
	we don't want our gold jewellery to break or wear away quickly.
2	An alloy is a solid solution. It is a mixture just like salt water and just like salt water you cannot
	see the different parts. When you have a solution in which you cannot see the parts, you call in
	a solution! (A solid solution is often called an alloy though).
3	Sodium hydroxide = NaOH
	O ₃ = ozone
	Sodium chloride = table salt
	CO ₂ = carbon dioxide
	Sodium hydrogen carbonate = baking soda
	Calcium carbonate = limestone/chalk
4	Muriatic acid = HCl

	Vinegar = $C_2H_4O_2$
	Potash = KCl
	Quicklime = CaO
	Milk of magnesia = $Mg(OH)_2$
	Natural gas = CH ₄
7	An ionic compounds involves metals + non-metals. Metals give away electrons and become +ve ions. Non-metals take electrons and become –ve ions. The +ve and –ve are attracted to each other often forming a crystal. There is NO chemical bond.
	A molecule involves a chemical bond. Chemical bonds are formed between a non-metal and a non-metal (covalent or sharing bond). Both non-metals wish to gain electrons to they simply share the electrons they need. This IS a chemical bond.