5.1 F	.1 Properties and Changes		
2	a) physical		
	b) chemical		
	c) chemical (silver reacts with air)		
	d) physical (density)		
	e) chemical (all cooking/baking changes the original substance)		
	f) chemical ('it changes' is your clue)		
3	a) physical – nothing is changed – just mixing ice cream and air		
	b) physical - water becomes a gas - simply a state change		
	c) chemical – pop means something ignited quickly		
	d) chemical - energy source is burned in vehicles		
	e) physical - water turns to steam - state change - its still water!		
	f) chemical (same as #2 c)		
4	Corrosive - this is a chemical property because the substance in the cleaner reacts with		
	your skin and 'eats' some of it away.		
5	This is a chemical change. When 'bubbles' show up, this is a chemical change. Note the		
	5 'clues' that a chemical change has occurred.		
6	a) physical property - paint should flow smoothly (be viscous), and the solvents should		
	have a low evapouration temperature so they dry quickly.		
	Chemical property - the solvent shouldn't react with air. Shouldn't be flammable in case		
	there is a spark around		
	b) Another convenient characteristic would be non-odorous. Some paint really stinks!!		
7	This is chemical. The cola produces bubbles – this is a new substance! The presence of		
	bubbles also is a clue of a chemical change.		
10	Braces - physical - bendable		
	Braces - chemical - doesn't react with water (saliva) , doesn't react with food or water		
	which are often in your mouth.		

5.4 - 1	5.4 - Patterns in the Periodic Table		
1	The atomic number is the number of protons and this also equals the number of electrons		
	in the neutral atom.		
2	a) state: metals are mostly solid while non-metals are all 3 states		
	b) metals are decent conductors (copper) while non-metals are not good conductors		
	c) metals are shiny while non-metals are not shiny		
	d) metals have few electrons in outer orbit (tend to lose them) while non-metals have		
	lost of electrons (near full) in outer orbit		
3	PERIODS go \rightarrow horizontal while groups (also called families) go vertical		
	a) fluorine		
	b) strontium		
	c) helium		
	d) iodine		
	e) potassium		
	f) aluminum		
	g) neon		
4	For Bohr-Rutherford diagrams – check the handout we did on 1 st day or see me.		
5	Count 1 after #118 and you will be in the alkali metals. It will have 1 valence electron (like		
	all alkali metals). It will also be highly reactive (like al alkali metals) It will also have		
	metals properties: shiny, conductor and solid.		
6	a) yellow powder \rightarrow non-metals (non-shiny)		
	b) gold \rightarrow metal (shiny)		
	c) gas \rightarrow non-metals because metals are not gasses at room temp.		
	d) metal \rightarrow liquid and shiny = mercury!		
7	Within a period \rightarrow going horizontally from left to right the # valence electrons increases		
	by 1 as you go along.		
	Within a group (also called a family) \rightarrow the number of valence electrons is the same.		
8	Atoms are electrically neutral because they contain the same number of electrons and		
	protons. If you do the math, the net charge = 0		
9	Potassium is not found in many highschools because it is so reactive.		

5.5 A	toms & Ions
1	
	Na ⁺¹ Na -6 86 16
	a) Eadium ion (No.1) and a codium atom have the come number of protons and
	a) Sodium ion (Na+1) and a sodium atom have the same number of protons and neutrons RUT the sodium ion has 1 less electron giving it a +1 change. The sodium
	ion also has one less electron orbit than the sodium atom (see drawings above)
	ion also has one less electron of bit man the sociality atom. (see a awings above).
	b) Neon atom - large and tough to draw! So I'll describe - see me if you need more
	help.
	Neon atom has electrons orbits with 2e/8e
	SoNa+1 (sodium ion) has electron orbits LIKE NEON. The ion is more stable
	because it's electron arrangement looks like the noble gas. (2 orbitswith 2e/8e)
2&3	I will describe the electron arrangement from innermost orbit to outer most
	Lithium electrons = $2e/1e$ Lithium ion = $2e = Li^{+1}$
	Oxygen = $2e/6e$ Oxygen ion = $2e/8e = 0^{-2}$
	Calcium = $2e / 8e / 2e$ Calcium ion = $2e / 8e / 8e = Ca^{+2}$
	Phosphorus = $2e/8e/5e$ Phosphorous ion = $2e/8e/8e = P^{-3}$
3	A cation is a positively charged ion. It is a metal ion
	An anion is a negatively charged ion. It is a non-metal ion.
4	a) magnesium cation
	b) suiphide anion
	c) from cation
	a) pitride anion
5	a) $S^{-2} \rightarrow P^{3-}$ C^{1-} Ar
	b) $A^{\dagger^3} \rightarrow Ma^{\dagger^2}$ Na ⁺ Ne
	c) $P^{3-} \rightarrow S^{2-}$ Cl ⁻ Ar
	d) Kr \rightarrow Br ⁻ Se ²⁻ Rb ⁺
	e) Cs+ → Kr Ba ⁺² Br ⁻
6	Alkali earth metals have 2 valence electrons and so will this new element. This element
	will give away 2 valence electrons and become a +2 ion (cation)
7	K ⁺² does not normally exist because K has 1 valence electron so it wants to give away just
	1 electron and become K+
	O_{-} doesn't normally exist because O has 6 valence electrons and tries to gain 2 to
	become stable. This means oxygen would become O ⁻² .

8	Groups 1, 2 and 13 tend to lose electrons and become cations (+ ions)
	Groups 15, 16, 17 tend to gain electrons and become anions. (- ions)
9	Hypoatremia means too much water. You have over-diluted your blood and you become
	disoriented and lose balance. You need a drink with Na+. You need salt water!

5.6 Io	nic Compounds p. 195 # 1, 2, 3, 5, 6, 7, 8	
1	A metal plus a non-metal form ionic compounds	
2	a) Mg and O would form an ionic compound because there is a metal (Mg) and a non-	
	metal (O). The metal wishes to give electrons away and the non-metal wishes to gain	
	electrons.	
	b) Zn and Cl would form an ionic compound because there is a metal (Zn) and a non-	
	metal (Cl). The metal wishes to give electrons away and the non-metal wishes to gain	
	electrons.	
	c) C and F would NOT form an ionic compound because both of these elements are	
	non-metals. Both want to gain extra electrons.	
	d) H and F would form an ionic compound. The Hydrogen would give away an electron	
2	(and act like a metal) and the Flourine would gain the electron.	
3	a) magnesium is the metal and chlorine is the non-metal	
	$\begin{pmatrix} 12p \end{pmatrix}$ 2e 8e 2e $\begin{pmatrix} 17p \end{pmatrix}$	
	magnesium chlorine	
	c) Magnesium will LOSE 2 electrons while chlorine will GAIN 1 electron	
	d) Magnesium give 1 electron to a chlorine and another electron to a second chlorine.	
	(12p) 2e 8e (2e)	
		\nearrow
	2e 8e 7 2e 8e	→ \ 70
1/p		76
5	Non-metals need to GAIN electrons to become stable. IF 2 non-metals are together.	
	there isn't an atom to GIVE AWAY an electron.	
	Alsonon-metals become + ions. + ions are NOT attracted to + ions.	
6	a) NaF \rightarrow in water will release 1 Na for every 1 F (1:1 ratio for Na:F)	
	b) Li ₃ N \rightarrow in water will release 3 Li for every 1 N (3:1 ratio for Li:N)	

	c) FeCl ₃ \rightarrow in water will release 1 Fe for every 3 Cl (1:3 ratio for Fe:Cl)
	d) K20 \rightarrow in water will release 2 K for every 1 O (2:1 Ratio for K:0)
7	a) Element X with 3 electrons in outermost orbit is a metal (similar to Aluminum).
	Element Y with 7 electrons in outermost orbit is a non-metal (similar to chlorine)
	b) Element X will become a +3 ion X ⁺³
	Element Y will become a -1 ion. Y^{-1}
	Using the criss-cross method, the compound will be XY_3
8	When ions are dissolved in water, the H_2O water molecules surround the ions and
	prevent them from rejoining and forming a solid again. (if you evapourate or boil
	away the water, the ionic solid does form again.)

5.7 No	5.7 Names and Formulas of Ionic Compounds p. 200 # 2, 3, 4, 9		
2	a) Calcium fluoride		
	b) Potassium sulfide		
	c) aluminum oxide		
	d) lithium bromide		
	e) calcium phophide		
3	Remember to use the criss-cross method (or if you are mathematically inclined, you		
	can figure it out with the zero-sum rule)		
	a) KBr		
	b) CaO *** Note: criss-cross method will give you Ca2O2. Since ionic compounds		
	just give you the ratio, you want to reduce to simplest ratio. Divide both		
	subscripts by 2 to give you 1:1 ratio.		
	c) Na ₂ S		
4	Tin (IV) oxide = SnO_2 Yescriss-cross will give you Sn_2O_4 but this is a ratio, so		
	you reduce to lowest form. Divide by 2 on both subscripts and you get SnO_2		
9	a) FeBr2		
	b) MnO ₂		
	c) SnCl ₄		
	d) Cu ₂ S		
	e) FeN		
	f) CuO		
	g) lead (II) chloride		
	h) iron (III) oxide		
	i) tin (II) sulfide		
	j) copper (II) phosphide		
	k) calcium bromide		

l) copper (II) fluoride
m) potassium phosphide
n) copper (I) phosphide

5.9 Po	5.9 Polyatomic Ions p. 205 # 1,2, 5 (ionic & polyatomic mixed), 4 (read chapter to		
find an	nswer), 9, 10		
1	a) potassium nitrate (nitrate ion)		
	b) calcium hydroxide (hydroxide ion)		
	c) calcium carbonate (carbonate ion)		
	d) copper (II) sulphate (sulphate ion)		
	e) potassium hydroxide (hydroxide ion)		
	f) iron (III) nitrate (nitrate ion)		
	g) copper (II) chlorate (chlorate ion)		
	h) ammonium phosphate (phosphate)		
2	a) KNO3		
	b) BaSO4		
	c) NH ₄ NO ₃		
	d) Al ₂ (SO ₄) ₃		
	e) KClO3		
	f) Cu(NO ₃) ₂		
	g) PbSO₄		
	h) Sn ₃ (PO ₄) ₂		
4	Nitrates occur naturally in soil and they are also present in farm fertilizers.		
5	**I also noted whether the compound was ionic or polyatomic. You should be		
	able to tell by the name.		
	a) tin (II) carbonate \rightarrow polyatomic compound		
	b) calcium chloride \rightarrow ionic compound		
	c) iron (III) hydroxide \rightarrow polyatomic compound		
	d) manganese (IV) oxide \rightarrow ionic compound		
	e) potassium sulphide \rightarrow ionic compound		
	f) ammonium sulphate \rightarrow polyatomic compound		
	g) manganese (II) chlorate $ ightarrow$ polyatomic compound		
	h) lead (II) iodide \rightarrow ionic compound		
9	The positive ion (cation) is always named first (look at question #1 above). Usually		
	the positive ion is a metal. Once in a while it is ammonium (NH_4^+)		
10	Cation(s) : Anion(s)		
	Fe(OH) ₃ - 1 Fe ³⁺ : 3 OH ⁻ Note: Do the reverse criss-cross to figure		
	out the ion charge!		
	$Cu(NO_3)_2$ - 1 Cu^{2+} : 2 NO_3^{1-} Fe(OH) ₃ done for you. Remember no		

			subscript with Fe means there is 1 Fe.
Al ₂ (SO ₄) ₃	-	2 Al ⁺³ : 3 SO4 ²⁻	Fe OH
(NH4)2CO3	-	2 NH_4^{+1} : 1 CO_3^{2-1}	You need to remember
K ₃ PO ₄	-	3K ⁺¹ : 1 PO ₄ ³⁻	and OH is negative.

5.10	Molecules and Covalent Bonding p. 212 # 1a, 2,3,4, 5, 6, 9
1 a)	Nitrogen triodide, carbon tetrachloride, oxygen diflouride, diphosphorous pentoxide, and
	dinitrogen trioxide
2	a) CO
	b) SF4
	c) N ₂ O ₄
	d) NBr ₃
	e) CS2
3	a) S = non-metal O = non-metal SO ₂ is an molecular compound sulphur dioxide
	b) $Pb = metal$ $O = non-metal$ PbO_2 is an ionic compound lead (IV) oxide
	c) Al = metal Cl = non-metal AlCl ₃ is an ionic compound aluminum chloride
	d) N = non-metal O = non-metal N2O is a molecular compound dinitrogen monoxide
	e) K = metal Cl = non-metal O = non-metal KClO ₃ is a polyatomic (ionic) compound
	potassium chlorate
	f) Sn is a metal $O = non-metal$ SnO ₂ is an ionic compound tin (IV) oxide
	g) Fe is a metal P is a non-metal O = non-metal FePO ₄ is a polyatomic (ionic) compound
	iron (III) phosphate
	h) N = non-metal O = non-metal N_2O_4 is a molecular compound dinitrogen tetroxide
4	a) hydrogen has 1 valence electron while oxygen has 6 valence electrons
	b) hydrogen needs 1 more electron to be stable while oxygen needs 2 more electrons to
	be stable
	$\begin{pmatrix} 1p \\ \bullet \end{pmatrix} \begin{pmatrix} 6p \\ \bullet \end{pmatrix} \begin{pmatrix} 1p \\ \bullet \end{pmatrix}$
	c) H ₂ O
-	
5	A molecule is a particle in which the atoms are joined by covalent (sharing electron)
	bonds. The subscripts tell you exactly now many atoms of each element there are in the
	molecule. For example, HF (hydrogen fluoride), molecules have 1 atom of hydrogen and
	1 atom of fluorine. (see page 20/ for diagram)
	However, Naci (sodium chloride) is an ionic compound and is not considered a molecule.
	The tormula tells us that there is a RATIO of 1Na: 1Cl. But ionic compounds form

	crystals of various sizes. The crystal could have 100 Na atoms and 100 Cl atoms! Or the crystal could have 5 Na atoms and 4 Cl atoms. The formula just tells us the ratio. The Na+ and Cl- join because positive and negative charges attract. (see page.193 for a diagram)
6	Ionic (and polyatomic) compounds achieve stability by <u>giving away electrons</u> (metals) or by <u>gaining electrons</u> (non-metals or -ve polyatomic ions). Molecular compounds achieve stability by <u>sharing</u> electrons.
9	Hydrogen peroxide, H_2O_2 , is a molecular compounds so the subscripts are not describing a ratio but the actual number of atoms of hydrogen and oxygen in the molecule. So there is exactly 2 hydrogens and 2 oxygens in hydrogen peroxide. You cannot reduce because it is incorrect to say the molecule has 1 hydrogen and 1 oxygen. That is not hydrogen peroxide.