Electrical Quantities

Quantity	Symbol	Unit	Unit symbol	Also equals...
Current	I	Amps	$\mathrm{A}=\mathrm{C} / \mathrm{s}$	
Voltage (potential difference)	$\Delta \mathrm{V}$	Volts	$\mathrm{V}=\mathrm{J} / \mathrm{C}$	
Resistance	R	Ohms	Ω	
6.2×10^{18} electrons		Coulomb Of electrons	C	
**Voltage is also known as 'potential difference'				

Remember, electrons are small, so we bundle a whole bunch $\left(6.2 \times 10^{18}\right)$ of them together and call it a 'Coulomb' of electrons.

An amp is a unit of current. A circuit may have a current of 1.0 A but that also means 1 coulomb of electrons is going by every second! $1.0 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$

A volt is a unit of potential difference or 'voltage'.
A volt measures how much energy (joules) each bundle of electrons (coulomb) has. So a 9 V battery sends out electrons so each coulomb of electrons has 9 Joules of energy.

$$
\text { So } 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C} \quad \ldots . \text { or.... } 9 \mathrm{~V}=9 \mathrm{~J} / \mathrm{C}
$$

Potential difference?
Potential - electricity has the potential to do work
Difference - because you must connect your voltmeter in 2 difference places (in parallel)

Resistance is the ability of a material to oppose the flow of electric current and is measured in ohms (Ω).

Measuring these quantities:

- Ammeter measure current (amps)
- Voltmeter measures voltage or p.d. (volts)
- Ohmeter measures resistance (ohms)

