What is Refraction? - 12.1

Do you remember the reappearing penny in class? A student stood where he(she) couldn't see a penny but when I poured water into the container, suddenly the penny reappeared! Why? It reappears because a key ray of light that went over his(her) head was now bending at the water/air boundary and hitting the eye! Viola – it is seen!

Notice that the refracting (bending) of light happens just at where the water and air meet. We call this the **interface**.

<u>Why does it refract</u>? Basically light refracts when it changes speed. yes, the speed of light is 3.0 x 108 m/s but this is just in a vacuum (think deep space). It is very very close to this speed in air too. But in other mediums, like water, it slows down and it refracts.

Rules of Refraction

1) The incident ray, refracted ray and the normal all lie in the same plane (ie: will be on a piece of paper in the lab – 2 dimensional).

See Fig. 4 on page 517 – Sketch and label below:

2) Light bends towards the normal when it slows down.

Light **bends away** from the normal when it speeds up.

*There is a good analogy with a wagon in the text.

Refraction AND Reflection - Often refraction and reflection occurs together. The closer the incident ray is to 0°, the more refracted light goes into the new medium. The greater the incident angle is, the more reflected light there is. Think about a window – you can see through, but often there is reflected 'glare' off it. Mirrored sunglasses have a special coating that reflects a lot of light – we see the reflection and usually we don't see the eyes behind!

Homework: p. 519 # 1,2 3, 4, 5, 7